## STATISTICS NOTES ON NORMAL DISTRIBUTION

Frequency distribution of many natural phenomena approachesmal curve.

Normal: Bell-shaped

Symmetrical

Continuous

Never touches *x*-axis

Area under curve = 1

Mean = median = mode

Mean = 0

Standard deviation = 1



The area under the curve between  $\bar{x} \pm \sigma$  is about 68%



The area under the curve between  $\bar{x} \pm 2\sigma$  is about 95%



The area under the curve between  $\bar{x} \pm 3\sigma$  is about 99.7%



Changing the mean will shift the graph to the left or right



Changing the standard deviation will make the graph wider or narrower.



z-scores: 
$$Z = \frac{x - \mu}{\sigma}$$

where  $\mu$  = the mean and  $\sigma$  = the standard deviation

Ex 1 The average weight of Oregon football players is 225 lbs. with a standard deviation of 40 lbs.

Find the z-score for a weight of 200 lbs.

-.625

Find the z-score for a weight of 290 lbs.

1.625







Ex 3 Find z:





Ex 4 A train's speed is normally distributed with a mean of 50 mph and a standard deviation of 15 mph.

What's the probability the speed is between 45 and 60 mph?

normal(df(45,60,50,15) ~.37

The fastest 10% of the time, how fast is the train going?

inv Norm (.9,50,15) ~ 69 mph.

Homework
p.93
#1-22
due Monday, October 14